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Abstract

In this appendix, we: (i) show that total equity volatility is well approximated by the
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estimates vary with our choice of the debt smoothing parameter and the maturities that
we assign to different types of liabilities.
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1 How Well DoesLM
t

⇥�
A,t

Approximate Total Equity Volatil-

ity?

The purpose of this section is to show that the approximation in Equation (2) performs well

in a fairly general option pricing setting. For completeness, recall that the asset return spec-

ification that we consider in the main text is given by:

dAt

At

= [µA(t)� �µJ ]dt+ �A,tdBA(t) + JAdNA(t)

d�

2
A,t = µv(t, �A,t)dt+ �v(t, �A,t)dBv(t) (1)

Ja andNA(t) capture potential jumps in asset values. log (1 + JA) ⇠ N (log [1 + µJ ]� �

2
J/2, �

2
J)

and Nt is a Poisson counting process with intensity �. As shown in Appendix A of the main

text, when assets evolve as in Equation (1), the volatility of equity is given by:
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(2)

whereLMt and ⌫t derive from the underlying option pricing function, f(·). The termVJ
A (JA, NA(t);At)

captures the volatility contribution coming from the jump component of asset returns. We

provide a simple way to compute this term in Section 2.

Our goal is to validate the following approximation of equity volatility:

dEt

Et

⇡ LMt�A,tdBA(t)

volt

✓
dEt

Et

◆
⇡ LMt ⇥ �A,t (3)

The main intuition behind this approximation is as follows: as the time to maturity

of the equity option gets larger, the contribution of the volatility of volatility to equity re-

turns/volatility is minimal. This is because volatility is mean reverts much faster than the

maturity of debt, and thus the total volatility over the life of the option is effectively con-

stant. Ultimately, this means that volatility of asset volatility matters less for equity return

volatility. A similar logic applies when asset returns experience jumps, so long as the jumps

occur with a small enough probability and the jump size is itself not too volatile.
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To assess the accuracy of the approximation in Equation (3), we analyze the Bakshi, Cao,

and Chen (1997) (BCC) model. We choose this model because it includes both stochastic

volatility and jumps, so we think it represents a fairly general option pricing setting. In the

BCC model, risk-neutral asset return dynamics are described as follows:

dAt

At

= [rft � �JµJ ] dt+ �A,tdBA(t) + J(t)dN(t)

d�

2
A,t =

⇥
✓v � v�

2
A,t

⇤
dt+ �BCC,v�A,tdBv(t)

where N(t) is a Poisson counting process with constant intensity �J . J(t) is the percentage

jump size and is i.i.d lognormal with unconditional meanµJ and standard deviation �J . The

parameter ✓v dictates the long-run average of risk-neutral asset volatility and v determines

the speed of mean reversion. Finally, the correlation between dBv(t) and dBA(t) is given by

⇢.

The first thing we must do is map the asset return specification in the BCC model to the

asset return specification in Equation (1). The relevant mapping for our purposes is:

�v = �BCC,v�A,t

With this in hand, we can use Equation (2) to express the total volatility of equity returns in

terms of the underling parameters in the BCC model:
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Armed with Equation (4), we are now in a position to assess the approximation for equity

volatility given in Equation (3), at least inside of the BCC model. To do so, we use the same

parameterization of the BCC model that we use in the main text, which we repeat here for

convenience. We set �J = 0.4, µJ = �0.1, �J = 0.15. This corresponds to 0.4 jumps a year,

each with an average jump size of -10% and volatility of 15%. Additionally, we set v = 4.08

and ✓v = 0.013. This means that the half-life of volatility is about 66 days (roughly what is

typically found in the literature) and the unconditional volatility of asset returns is 17.5%.

We also set �v = 17.5% and ⇢ = �0.7. When computing the leverage multiplier, we set the

current spot volatility equal to its long run average, so �A,0 = 17.5%.

In addition, we consider time to maturities of ⌧ = 2, 5, 10. This allows us to get a sense

of how well the approximation works for different debt maturities. In all cases, we set the

annualized risk free rate r = 3%. For each maturity, we vary the face value of debt, and
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compute the ratio of Equation (3) to Equation (4). We define this ratio as , and it represents

the proportion of total volatility that comes from the simple leverage multiplier term that we

use as a workhorse throughout the paper. Keep in mind that is computed for each value of

debt, D. We can also use the BCC model to compute the implied equity value for each value

of D. Finally, in Figure 1 we plot each  against its corresponding implied debt-to-equity

ratio.

The main takeaway from Figure 1 is that Equation (3) is a pretty good approximation of

total equity volatility. Regardless of debt maturity, the portion of total volatility coming from

LMt⇥�A,t is very high, ranging from 85% to 110%. For reasonable amounts of leverage (e.g.

5-15), this proportion is anywhere from 90-105%. Obviously these numbers depend heavily

on the calibration we have used; nevertheless, it seems reasonable to at least conclude that

the first order determinant of total equity volatility comes from how the leverage multiplier

amplifies asset volatility.

2 Total Volatility of Equity in Stochastic Volatility with Jump

Environment

We need to compute the variance of the following term:

VJ
A (JA, NA(t);Et) ⌘ vart (JEdNA(t))

where JE is the percentage change in equity induced by jumps. Clearly, this is a function of

the percentage change in assets induced by jumps. Explicitly, this is:

JE =

E

J
t � Et

Et

=

f(At(1 + JA))

f(At)
� 1
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where f(·) is the call option pricing function (we suppress all but the first argument for

notional convenience). The definition of variance implies that:

VJ
A (JA, NA(t);Et) = E

⇥
(JEdNA(t))

2⇤� E [JEdNA(t)]
2

= E
⇥
J

2
EdNA(t)

2
⇤
� E [JE]

2 E [dNA(t)]
2

= E
⇥
J

2
E

⇤
E
⇥
dNA(t)

2
⇤
� E [JE]

2
�

2
dt

2

= E
⇥
J

2
E

⇤
�dt

Here, the second and third lines use the independence of the asset jump, JA (and hence JE),

and the Poisson process dNA(t). Additionally, the third and fourth lines use the standard

variance definition for a Poisson process at small time intervals.1

All that remains is to compute the following term:
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where hY (y) is the pdf of a normal random variable with mean log [1 + µJ ]��

2
J/2 and vari-

ance �2
J . In practice, this is easily computed numerically. We have further checked that this

derivation is correct by computing the variance contribution of jumps (to equity volatility)

when there is no debt. This must correspond to the case where assets equal equity, in which

case there is a closed form solution for the component of variance coming from jumps (Bak-

shi, Cao, and Chen (1997)). We can then compare the closed form solution to our numerical

1i.e.

vart (dNA(t)) = E
⇥
dNA(t)

2
⇤
� E [dNA(t)]

2

,
E
⇥
dNA(t)

2
⇤

= vart (dNA(t)) + E [dNA(t)]
2

= �dt+ �2dt2

= �dt
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computation above.

3 Robustness

In this section, we explore the robustness of our parameter estimates to two different as-

sumptions: (i) the smoothing parameter that we use to exponentially smooth debt; and (ii)

the maturities that we assign to each liability type. All robustness checks are found in Table

1.

3.1 Smoothing Parameter for Debt

As a reminder, we define the face value of debtDt as the sum of insurance reserves, deposits,

short term debt, long term debt, and other liabilities. We observe debt values at the end of

each quarter. For each day in a given quarter, we use the debt value reported at the end of

the last quarter. This naturally creates a very choppy debt series. To minimize the impact

that this has on the estimation, we smooth the daily book value of debt using an exponential

average:

Dt = ⌘

b
Dt + (1� ⌘)Dt�1, D0 =

b
D0

In our baseline model, we set ⌘ = 0.01. We chose this value because it implies a half-life

of approximately 70 days in terms of the weights of the exponential average. This seems

reasonable for quarterly data. Table 1 presents the median parameter estimates when we

use ⌘ = 0.05. For convenience, we report our baseline median parameter estimates in the

table as well (this is the first set of parameter estimates in the table). When using ⌘ = 0.05,

the Structural GARCH parameter estimates are basically the same as when ⌘ = 0.01. In

addition, the number of firms with� that is statistically different from zero is also insensitive

to the choice of ⌘.

3.2 Debt Maturity

Recall that to compute the debt maturity for every firm at each point in time, we first assign

a maturity to each type of liability on the firm’s balance sheets. For all firms, we set the ma-

turity of each liability as follows: insurance reserves are 30 years, deposits are 1 year, short

term debt is 2 years, long term debt is 8 years, and other liabilities are 3 years. These matu-

rities reflect our best guess of the “typical” maturity of each type of liability. We now check
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how sensitive our parameter estimates are to different assumptions about the maturity type

of each liability.

Deposits

Deposits are by definition very short term debt. However, one might argue that deposit in-

surance means banks and markets view deposits as having very little rollover risk. Under this

view, deposits are actually much longer duration liabilities. In lieu of this possibility, we re-

estimate our baseline model but set the maturity of deposits to 10 years instead of 1 year. As

Table 1 shows, the median GJR parameter estimates for asset returns are largely unaffected

by changing the assumed maturity of deposits. The most sensitive parameter is clearly �,

which moves from a baseline value of 0.68 to 0.89 with longer duration deposits. Intuitively,

increasing the time to maturity of debt mechanically lowers the leverage multiplier because

there is more time for assets to expire “in the money”. Because the data calls for a larger

leverage multiplier, the estimated � increases in order to offset this effect. Importantly, the

number of firms with a statistically significant � is unchanged from this exercise.

Other Liabilities

The “other liabilities” item on firms’ balance sheets is also difficult to pin down in terms of

maturity. We (somewhat arbitrarily) set other liabilities to have a maturity of 3 years. From

Table 1, it is clear that changing the maturity of other liabilities from 3 to 7 years has basically

no impact on the baseline parameter estimates. This is most likely because other liabilities

are such a small portion of most firms’ balance sheets.

Insurance Reserves

While it is clear that insurance reserves should have a fairly long maturity, it is not obvious

precisely what number this should be. Our last perturbation is to change the maturity of

insurance reserves from 30 years to 20 years. The last set of parameter estimates in Table 1

indicate that the moving insurance reserves to a 20 year maturity does not impact the pa-

rameter estimates in a material way. This is likely for two reasons. The first is that insurance

reserves are not a huge liability for many of the firms in our sample. The second is that the

leverage multiplier becomes less sensitive to changes in the time to maturity for very large

maturities.
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Details on Maturity of Long-Term Debt

In the baseline estimation of the model, we define the maturity of a firm’s total liability struc-

ture to be a weighted-average of the maturities of its deposits, short term debt, long term

debt, and insurance reservers. In order to operationalize this definition, we use a “best-

guess” of the maturities for each of these debt instruments. To inform our best guess of long

term debt maturity, we downloaded a snapshot of the outstanding bonds for the firms in our

sample. This data is available from Bloomberg and we used data as of 9/6/2016.2 Bloomberg

reports the average debt maturity across the different vintages of each firm’s bonds, which

we call ⌧ i,LTD. Across our subset the average ⌧ i,LTD is 8.78 years and the median is 6.90

years. We split the difference between these two numbers and set long term debt to have a

(rounded) maturity of 8.

27 of the firms did not have data available on Bloomberg.
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Figure 1: How Well Does LMt ⇥ �A,t Approximate Total Equity Volatility?
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Notes: This figure visualizes the accuracy of usingLMt⇥�A,t in approximating total equity volatility. To assess this accuracy, we compute
both LMt ⇥ �A,t and total equity volatility in the Bakshi, Cao, and Chen (1997) (BCC) model. In the BCC model, asset returns have
stochastic volatility and experience jumps. For a given time to maturity ⌧ , we vary the face value of debt in the BCC model and compute
the ratio of LMt ⇥ �A,t to total equity volatility. Total equity volatility is given by Equation (4). The figure plots this ratio (for a given debt
and ⌧ ) against the implied debt-to-equity ratio (for the same debt and ⌧ ). We consider three maturities of ⌧ = 2, 5, 10. For all data points,
the interest rate r = 0.03, the time to maturity ⌧ = 2, and the total volatility of assets is set to 17.5%. Furthermore, we calibrate the
Bakshi, Cao, and Chen (1997) model as follows: the speed of volatility mean reversion  = 2.77; the correlation between volatility shocks
and asset return shocks ⇢ = �0.7; long-run average asset variance ✓ = 0.013; volatility of asset variance �v = 17.5%; jump intensity
�J = 0.4; average jump size µJ = �0.1; and average jump volatility �J = 0.15. All parameters are stated in risk-neutral space.
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Table 1: Parameter Sensitivity Analysis

⌧D ⌧S ⌧L ⌧I ⌧O ⌘ ! ⇥ 107 ↵ � � � % with |t(�)| � 1.64

1 2 8 30 3 0.01 7.30 0.041 0.071 0.914 0.680

(1.12) (2.91) (3.01) (71.24) (2.36) 60.4

1 2 8 30 3 0.05 7.56 0.042 0.071 0.914 0.696

(1.22) (2.88) (2.82) (69.85) (2.35) 61.5

10 2 8 30 3 0.01 8.01 0.040 0.072 0.914 0.890

(1.17) (2.92) (3.06) (71.30) (2.77) 62.6

1 2 8 30 7 0.01 7.10 0.042 0.071 0.914 0.684

(1.16) (2.96) (3.05) (71.47) (2.24) 59.3

1 2 8 20 3 0.01 6.86 0.041 0.072 0.913 0.709

(1.12) (2.91) (3.01) (71.24) (2.70) 64.8

Notes: This table shows how sensitive the Structural GARCH parameters are to our choice of debt maturities for various liabilities, as well as
the smoothing parameter that we use when exponentially smoothing the total debt for each firm. ⌧i is the maturity (years) of liability type
i, where i = D is deposits, S is short-term debt, L is long-term debt, I is insurance reserves, and O is other liabilities. ⌘ is the smoothing
parameter we use when exponentially smoothing the total firm debt series, where total firm debt is the sum of all of the liability types. The
reported Structural GARCH parameters are the median point estimates across the 91 firms in our sample. Median Bollerslev-Wooldridge
robust t-statistics are listed below each parameter value in parentheses. % with |t(�)| � 1.64 indicates the percent of firms with a � that
is statistically different from zero at a 10 percent confidence level. The first set of parameters listed is the baseline configuration that we
use for all estimation in the main text.
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